January 11. 1978
WOCOMAL FRESHMAN MEET
ROUND I: GRAPHING OR THE NUMBER LINE

ANSWERS
1.

2.

ON THE NUMBER LINES ABOVE DRAW THE GRAPHS OF THE SOLUTIONS OVER THE SET OF REAL NUMBERS FOR THE FOLLOWING OPEN SENTENCES. USE THIS NOTATION FOR $3 \leq x<5$ or $x>6$

(1 point) 1. $|x-2| \leq 3$
(2 points) 2. $\left\{x_{8}-2<4-3 x<2 x-1\right\}$
(3 points) 3. $|x-3|-|x|<1$

Marlboro, Ware, Worcester Academy

January 11, 1978
ROUND II: AREA \& VOLUME

WOCOMAL FRESHMAN MEET

ANSWERS

(1 point) 1. \qquad square feet
(2 points) 2. \qquad liters
(3 points) 3. \qquad square cm.

1. The length of a rectangle is 2 feet more than the width and the perimeter is 44 feet. Find the area of the rectangle.
2. How many liters are there in a container which is a right circular cylinder if the diameter of its bottom is 40 centimeters and the height is 2 meters. A liter is equal to the volume of a 10 centimeter cube. Leave your answer in π form and measured in cubic centimeters.
3. Find the area of the shaded region if the perimeter of the figure is 144 cm . Assume that the circles and line segments just touch. Leave the answer in terms of π.

ANSWERS
(1 point) 1. \qquad
(2 points) 2 . \qquad
(3 points) 3 . \qquad

1. If $x * y=x+y+x y$, find $(2 * 3) * 2$.
2. Professor Katz's educated mice travel only in the directions shown by the arrows. When they come to a corner, they are just as likely to go one way as the other. What percent of the mice that enter at door A leave by door C ?

3. How many ordered pair solutions of the system

$$
\left\{\begin{array}{l}
x>0 \\
y \geq 0 \\
5 x+3 y<15
\end{array}\right.
$$

have only integer coordinates?

January 11. 1978 WOCOMAL FRESHMAN MEET
ROUND IV: OPERATIONS ON NUNERICAL
ANSWERS FRACTIONS AND DECIMALS
(1 point) 1.
(2 points) 2. \qquad
(3 points) 3. \qquad

1. Simplify $\frac{\frac{2}{3}+\frac{5}{6}}{\frac{3}{5}-\frac{1}{2}}$.
2. What is the sum of the numerator and denominator (in reduced form) of the fractional equivalent of the repeating decimal $0 . \overline{21}$.
3. The numerator of a fraction is 3. If the numerator is increased by 9 and the dencminator is increased by 11 , the resulting fraction is equal to $\frac{1}{2}$. What was the original denominator?

TEAM ROUND: NUMBER THEORY - PRIMES. DIVISIBILITY, LCM, GCF, SEQUENCES \& SERIES

1. How many times is 2 a factor of 512 ?
2. Find the product of the least common multiple and the greatest common factor of 210 and 85 .
3. If $\operatorname{set} A=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots\right\}$ and set $B=$ $\left\{2,1, \frac{2}{3}, \frac{1}{2}, \frac{2}{5}, \ldots\right\}$, find the 100 th term in the set formed by adding corresponding terms of sets A and. E.
4. Find the least common multiple of $14,10,21,15$.
5. Find three prime numbers whose product is 1353.
6. How many digits are used to number the pages of a book from 1 through 128 ?
7. Divide the least common multiple of $12,16,20$ by the greatest common factor of 126 and 240 .
8. Indicate by letters a, b, c, and d which of the following are integers: (a) $424710 \div 8$
(b) $424710 \div 9$
(c) $424710 \div 10$
(d) $424710 \div 11$
9. Take the prime number that is greater than 47 but less than 59, and subtract the greatest common factor of 42 and 56, then multiply by the negative reciprocal of $-\frac{3}{2}$. State your answer.
10. What is the greatest common factor of 18 ? and 129. 10. \qquad
11. Establish the next two numbers in the sequence 1. 5. 14, 30, 55, 91, \qquad , \qquad .
12. \qquad
13. Determine the next two numbers in the sequence
14. \qquad

Auburn, Burncoat, Holy Nane, Marlboro, South, Shrewshury. Sonthhrideo. Womhiontt wame
January 21.1978 WOCOMAL FRESHMAN MEET ANSWERS
ROUND I

ROUND II

(1 pto) 1. $120 \mathrm{Sq} . \mathrm{Pt}$ 。
(2 pts.) 2. 80m lifters
(3 pts) 3. or $396=99 \mathrm{mq}$. cm ,
99(4-m) sq. cm.
ROUND III
(1 pt.) 1. 35
(2 pts.) 2. 75%
(7 pts) 3. 6
ROUND IV
(1 pto) 1. 15
(2 pts.) 2. 40
(3 pts.) 3. 13

TEA朋 ROUND
TWO POINTS EACH

1. 9
2. 17850
3. $\frac{3}{100}$ or 0.03
4. 210
5. 3011041
6. 276
7. 40
8. $b_{0} c_{0} d$
9. 26
10. 17
11. 140,204
12. 94.46
